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Abstract
In this paper, a new selection of factors for the construction of the minimum
polynomial of a supermatrix M is proposed, leading to null polynomials of M
of lower degree than the degree of the corresponding polynomial obtained by
using the method proposed in the work of Urrutia and Morales [1]. The case
of (1 + 1) × (1 + 1) supermatrices has been completely discussed. Moreover,
the main theorem concerning the construction of the minimum polynomial as
a product of factors from the characteristic polynomial in the general case of
(m + n) × (m + n) supermatrices is given. Finally, we prove that the minimum
polynomial of a supermatrix M, in general, is not unique.

PACS numbers: 02.10.Yn, 02.10.−v, 02.20.−a

1. Introduction

For any matrix M over the field F,F = R or C, its characteristic polynomial is defined by
XM(t) = det(tI −M), where I is the n×n identity matrix. According to the Cayley–Hamilton
theorem, every matrix M satisfies its characteristic polynomial, that is, if we substitute the
indeterminate t by the matrix M using t0 = I , the produced polynomial matrix XM(M) is the
zero matrix. The characteristic polynomial can be written in the form

XM(t) = tn + cn−1t
n−1 + · · · + c1t + c0 (1.1)

with c0, c1, . . . , cn−1 ∈ F . The coefficients c0, c1, . . . , cn−1 are invariants of the matrix M
under similarity and they can be written in terms of traces of M and its powers M2, . . . ,Mn−1.

Especially, we have

c0 = (−1)n det M cn−1 = −tr M. (1.2)

The Cayley–Hamilton theorem has found many interesting applications as follows:

• in the construction of the so-called skein relations, which are relevant to the calculation
of expectation values, and in the process of reduction of the phase space [2];
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• in the (2 + 1)-dimensional Chern–Simons theories [3];
• in the discussion of the reduced phase space of the de Sitter gravity in (2 + 1) dimensions,

which is equivalent to the Chern–Simons theory of the group SO(2, 2) [4];
• in the reduction of phase space in the case of (2 + 1) super de Sitter gravity, which is the

Chern–Simons theory of the supergroup Osp(1/2, C) [5];
• in the study of loop representations in quantum supergravity in terms of a GSU(2)

connection, in order to state that any product of Wilson loops can be expressed as a linear
combination of Wilson loops [6].

This paper is motivated from the work of Urrutia and Morales [1], where the Cayley–
Hamilton theorem for supermatrices is discussed and a method for the construction of
the minimum polynomial of a supermatrix is introduced. In section 2, we introduce our
notation concerning all well-known material on Grassmann algebras, supermatrices and their
characteristic polynomial.

In section 3, we study completely the case of (1 + 1) × (1 + 1) supermatrices. We
determine the minimum polynomial of the arbitrary (1 + 1) × (1 + 1) supermatrix (theorem 3.2)
and prove that it is, in general, not unique.

In section 4, we include our proposal on the construction of null polynomials for a
supermatrix M, which gives the possibility of constructing a null polynomial of a supermatrix
M of degree less than the degree of the corresponding minimum polynomial introduced by the
method proposed by Urrutia and Morales [1].

We prove that the minimum polynomial of a supermatrix is a divisor of its characteristic
polynomial and state the general theorem. We use three examples to describe the general
situation on the minimum polynomial of a supermatrix.

2. Null polynomials for supermatrices

Let �p denote the Grassmann algebra on p < +∞ mutually anticommuting generators, over
the field F of scalars (i.e. the real or complex numbers). �p can be written as the direct sum
of two subspaces �p,0̄ ⊕ �p,1̄, where �p,0̄ (resp. �p,1̄) is the even (resp. odd) part of �p and
consists of all linear combinations of products of an even (resp. odd) number of generators.
�p,0̄ contains the identity 1 and its elements commute with the elements of �p. The elements
of �p,1̄ mutually anticommute.

Alternatively, �p can be written as the direct sum �p = F
⊕

�p,N where F is the field of
scalars and �p,N consist of all linear combinations of a non-zero number of generators. Thus,
any element α ∈ � is a sum of the form α = ᾱ + s(α) where ᾱ ∈ F is the body or numeric
part of α and s(α) is the soul or nilpotent part of α. The elements of �p,N are nilpotent with
degree of nilpotency less than or equal to p. The invertible elements of �p are of the form
f 1 + n, where f �= 0 and n ∈ �p,N and constitute a subgroup �∗

p of �p. For further details,
see [7].

Rogers in [8] has shown that �p has a norm which gives it the structure of a Banach
algebra. Rogers further has shown that p can be taken to be infinity and in that case �∞
consists of all those linear combinations of products, with a finite number of factors in each
product, from a countable set of anticommuting generators, which have a finite norm. �∞ is
a Banach algebra which retains some but not all of the algebraic properties of �p for p < ∞.
For example, the elements in �∞,0̄ commute with all elements of �∞, the elements of �∞,1̄

mutually anticommute and they are nilpotent of degree 2. In general, the elements of �∞,N

are not nilpotent in the algebraic sense, but they are topologically nilpotent, see [8]. In the
following we use �, instead of �p,p � ∞.
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Let

M =
[
A B

C D

]
(2.1)

be a supermatrix over �, of type (m + n) × (m + n), i.e. A (resp. D) is an m × m (resp. n × n)
matrix whose entries belong to �0̄ and B (resp. C) is an m × n (resp. n × m) matrix whose
entries belong to �1̄. The set of all supermatrices of the form (2.1) is denoted by M(m, n; �)

and it is the even part of the Grassmannification of the Lie superalgebra M(m, n; F) given
by � ⊗ M(m, n; F), i.e.

M(m, n; �) = (� ⊗ M(m, n; F))0̄

= (�0 ⊗ M(m, n; F)0̄) ⊕ (�1 ⊗ M(m, n; F)1̄)

a form which explicitly displays the decomposition into diagonal and off-diagonal components.
It is called the Grassmann envelope [9] of the Lie superalgebra M(m, n; F).

It is known from the work of Nieuwenhuizen [10] that the supermatrix M is invertible if
and only if A and D are invertible, which is the case if and only if the matrices Ā and D̄ formed
from the numeric components (bodies) of the entries in A and D are invertible. Explicitly, we
have the following two equivalent forms [11]:

M−1 =
[
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

=
[

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1C(A − BD−1C)−1BD−1 + D−1

]
. (2.2)

There is a linear �0̄-valued function on the set of all supermatrices M(m, n; �), called
supertrace and defined by

str M = tr A − tr D (2.3)

where the trace function is the usual sum of the diagonal elements of a square matrix (see
Arnowitt et al [12]).

The superdeterminant or Berezinian of a supermatrix M is a �0̄-valued function defined
by

s det M = (det A) det −1(D − CA−1B) (2.4)

for invertible supermatrices. An equivalent formula of the superdeterminant is [13]

s det M = det(A − BD−1C) det −1D. (2.5)

In the following, we use polynomials from the ring of polynomials �0̄[x], which is not
an integral domain [14]. We denote by R = s(�0̄)[x] the set of nilpotent elements of �0̄[x].
It is the smallest prime ideal of �0̄[x]. The ratio of polynomials is an element of the quotient
ring, the localization of �0̄[x] at the minimal prime ideal. It is defined by

�0̄(x) = �0̄[x]R =
{

f

g
: f, g ∈ �0̄[x], g /∈ R

}
. (2.6)

�0̄(x) is the even part of the Z2-graded algebra

�(x) =
{

f

g
: f ∈ �[x], g ∈ �0̄[x], g /∈ R

}
(2.7)

where �[x] is the ring of polynomials over the Grassmann algebra �.
The body f̄ of a polynomial

f (x) = a0x
n + a1x

n−1 + · · · + an−1x + a0 (2.8)
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in �[x] or in �0̄[x] is defined by

f̄ (x) = ā0x
n + ā1x

n−1 + · · · + ān−1x + ā0. (2.9)

A polynomial f (x) ∈ �[x] is invertible, if f̄ �= 0.
For a rational function h(x) = f (x)

g(x)
∈ �0̄(x) and w ∈ �0̄ we have

h(w) =
{

f (w)
g(w)

if g(w) �= 0

it is not defined otherwise.
(2.10)

w ∈ �0 is a zero of h, if h(w) = 0, w ∈ �0 is a pole of h, if h is invertible and h−1(w) = 0.
Any supermatrix of the form (2.1) can be written as

M = M̄ + s(M) (2.11)

where

M̄ =
[
Ā 0
0 D̄

]
s(M) =

[
s(A) B

C s(D)

]
(2.12)

with Ā = (āij ), D̄ = (d̄ij ), s(A) = (s(aij )), s(D) = (s(dij )).
An even vector is a column

X0 = (x1, . . . , xm, xm+1, . . . , xm+n)
T (2.13)

where xi ∈ �0̄, for i = 1, 2, . . . ,m, and xi ∈ �1̄, for i = m + 1, . . . ,m + n.
An odd vector is a column

X1 = (x1, . . . , xm, xm+1, . . . , xm+n)
T (2.14)

where xi ∈ �1̄, for i = 1, 2, . . . ,m, and xi ∈ �0̄, for i = m + 1, . . . ,m + n. The number
λ ∈ �0̄ is an eigenvalue of the supermatrix M [15], if there exists a vector X of the form (2.13)
or (2.14) with X̄ �= 0 such that

MX = λX. (2.15)

The eigenvalue λ is of the first (resp. second) kind, if the corresponding eigenvector X is even
(resp. odd) [15].

The supermatrix M of the form (2.1) is called separable or generic [9], if the eigenvalues
α1, α2, . . . , αm of Ā and the eigenvalues δ1, δ2, . . . , δn of D̄ are all different. Then M has
eigenvalues a1, a2, . . . , am of the first kind such that ā1 = α1, ā2 = α2, . . . , ām = αm, and
eigenvalues d1, d2, . . . , dn of the second kind such that d̄1 = δ1, d̄2 = δ2, . . . , d̄n = δn.
Moreover, there exists an invertible supermatrix N such that

NMN−1 = diag(a1, a2, . . . , am, d1, d2, . . . , dn). (2.16)

The characteristic function of a supermatrix M given by (2.1) is a rational function of an
even Grassmann indeterminant x defined by Kobayashi and Nagamachi [14], as follows

h(x) = s det(xI − M) = F(x)

G(x)
= F̃ (x)

G̃(x)
(2.17)

where we have

F(x) = det(xI − A)n+1

G(x) = det[det(xI − A)(xI − D) − C(det(xI − A)(xI − A)−1B]

F̃ (x) = det[det(xI − D)(xI − A) − B(det(xI − D)(xI − D)−1C]

G̃(x) = det(xI − D)m+1.
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Then, the characteristic polynomial P(x) of the supermatrix M is defined as [1]

P(x) = F̃ (x)G(x) = F(x)G̃(x) = a(x)n+1d(x)m+1 (2.18)

where we have put
a(x) = det(xI − A) (2.19)

d(x) = det(xI − D). (2.20)

The well-known Cayley–Hamilton theorem for a usual real or complex matrix is also
valid for supermatrices with the characteristic polynomial P(x) defined by (2.18) [16].

Urrutia and Morales [1] in their attempt to determine for the supermatrix M, given by
(2.1), its minimum polynomial, that is, a monic null polynomial Q(x) of the least possible
degree, such that Q(M) = 0, define the polynomial

Q(x) = f̃ (x)g(x) = f (x)g̃(x) (2.21)

where f, f̃ , g, g̃ are coming from the relations

F̃ = Rf̃ G̃ = Rg̃ F = Sf G = Sg (2.22)

where R (resp. S) is a common divisor of maximum degree of the pair F̃ , G̃ (resp. F,G).
The polynomial Q(x) is a null polynomial of the supermatrix M, for any common factors

R and S satisfying (2.22) ([1], theorem 3.2).
Our unease, for the consideration of the common factors R, S, is that their elimination in

the definition of the polynomial Q(x), even it leads to a null polynomial of the supermatrix
M of lower degree than the characteristic polynomial P(x), has the disadvantage that it
eliminates some factors involved in the computation of the superdeterminant, as well as in the
definition of the characteristic polynomial P(x). It looks possible sometimes, using factors
from the characteristic polynomialP(x), the factors of R, S included, to construct a null monic
polynomial of the supermatrix M of lower degree than the degree of the polynomial Q(x).

Next, we prove that the assertion of Urrutia and Morales ([1], theorem 3.2), that the
polynomial Q(x) given by (2.21) is a null polynomial of the supermatrix M does not generally
work, even if we consider the simplest case of (1 + 1) × (1 + 1) supermatrices.

3. The case of (1 + 1) × (1 + 1) supermatrices

We consider the arbitrary (1 + 1) × (1 + 1) supermatrix

M =
[
p α

β q

]
p, q ∈ �0̄ α, β ∈ �1̄.

Then we have

F̃ (x) = (x − p)(x − q) − αβ G̃(x) = (x − q)2

F(x) = (x − p)2 G(x) = (x − p)(x − q) + αβ.

Bearing in mind that �0̄[x] is not a unique factorization ring and following factorizations
and the Euclidean algorithm [13], we consider the cases:

Case 1 (p �= q). We now distinguish the cases:

Case 1a (p̄ �= q̄, αβ �= 0). Then following the factorization theory developed in [13] we have

F̃ (x) = (x − p)(x − q) − αβ =
(

x − p +
αβ

q − p

) (
x − q − αβ

q − p

)

G̃(x) = (x − q)2 =
(

x − q +
αβ

q − p

) (
x − q − αβ

q − p

)
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F(x) = (x − p)2 =
(

x − p +
αβ

q − p

) (
x − p − αβ

q − p

)

G(x) = (x − p)(x − q) + αβ =
(

x − p − αβ

q − p

) (
x − q +

αβ

q − p

)
.

We note that the factorization of the polynomials F̃ (x),G(x) is unique, while the factorization
of G̃(x), F (x), which is not unique, has been chosen in the given form in order to obtain the
common factors:

R = x − q − αβ

q − p
S = x − p − αβ

q − p
.

The characteristic function h(x) is simplified to the form

h(x) = f̃

g̃
= f

g
=

x − p + αβ

q−p

x − q + αβ

q−p

.

Thus, we have the characteristic polynomial

P(x) = F̃ (x)G(x) = F(x)G̃(x) = (x − p)2(x − q)2

and the polynomial

Q(x) = f̃ (x)g(x) = f (x)g̃(x) =
(

x − p +
αβ

q − p

) (
x − q +

αβ

q − p

)

which is a monic null polynomial of the supermatrix M . It can easily be checked that the
polynomial Q(x) is the minimum polynomial of the supermatrix M and that it is unique.

Case 1b (p̄ �= q̄, αβ = 0). Then we have

P(x) = F̃ (x)G(x) = F(x)G(x) = (x − p)2(x − q)2

R(x) = x − p S(x) = x − q

and the polynomial of degree two

Q(x) = f̃ (x)g(x) = f (x)g̃(x) = (x − p)(x − q)

is, in fact, the minimum polynomial of the supermatrix M .

Case 1c (p̄ = q̄, αβ �= 0). Then we have

P(x) = F̃ (x)G(x) = F(x)G̃(x) = (x − p)2(x − q)2 R(x) = 1 S(x) = 1.

The characteristic function cannot be simplified and the degree-four polynomial

Q(x) = (x − p)2(x − q)2 = P(x)

is the minimum polynomial of the supermatrix M .

Case 2 (p = q). We distinguish the cases:

Case 2a (αβ �= 0). Then we have the characteristic function

h(x) = F̃ (x)

G̃(x)
= (x − p)2 − αβ

(x − p)2
= (x − p)2

(x − p)2 + αβ
= F(x)

G(x)

and the characteristic polynomial

P(x) = (x − p)4 = Q(x)
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because the characteristic function cannot be simplified. Clearly, Q(x) is a null polynomial
of the supermatrix M . However, we can check that the minimum polynomial of M is the third
degree polynomial

m(x) = (x − p)3.

Moreover, we can check that m(x) is not unique, as we can easily verify that the minimum
polynomial mM̄(x) = x − p̄ of the numeric part M̄ of the supermatrix M , multiply by a factor
σ ∈ �0̄ annihilating all nilpotent elements in �0̄, is also a null polynomial of M . Therefore,
we have a family of monic null polynomials of the supermatrix M of degree three

m(x) + κσmM̄(x) = (x − p)3 + κσ(x − p̄) κ ∈ C.

Later we will see that it is valid generally (theorem 3.1).

Case 2b (αβ = 0). Then we have the characteristic function

h(x) = (x − p)2

(x − p)2
= 1

and the characteristic polynomial

P(x) = (x − p)4.

In this case, we have R(x) = (x − p)2 = S(x) and thus Q(x) = 1, which is not a null
polynomial of the supermatrix M . With an easy calculation we find that the polynomial

m(x) = (x − p)2

of degree two is the minimum polynomial of the supermatrix M . According to the discussion
of non-uniqueness made in case 2a, also in this case the minimum polynomial m(x) is not
unique.

Case 2c (α = 0 = β). In this case, we have

h(x) = 1 R(x) = S(x) = (x − p)2 P(x) = (x − p)4

and Q(x) = 1, which is not a null polynomial of the supermatrix M . The minimum polynomial
of M is the first degree polynomial

m(x) = x − p

which is unique.
From the previous discussion it is clear that the use of the common factors R(x) and S(x)

in the case of a non-separable (1 + 1) × (1 + 1) supermatrix M , either does not lead to a null
polynomial of the supermatrix M or does not lead to the minimum polynomial of M .

In all cases the minimum polynomial of M is a product of factors of the characteristic
polynomial P(x) of the form

a(x) = x − p d(x) = x − q a(x) ± αβw1(x) and d(x) ± αβw2(x)

where wi(x) ∈ �0[x], with deg wi(x) � 1, i = 1, 2, which are taken from the various possible
factorizations of P(x). Factors of the form

a(x) ± αβw1(x) and d(x) ± αβw2(x)

with wi(x) ∈ �0[x], degwi(x) � 2 are not suitable because these do not lead to monic
polynomials.

In the case of separable (1 + 1) × (1 + 1) supermatrix M, i.e. when p̄ �= q̄, the minimum
polynomial of M is the second degree polynomial

m(x) =
(

x − p +
αβ

q − p

) (
x − q +

αβ

q − p

)
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where p − αβ

q−p
is the eigenvalue of the first kind and q − αβ

q−p
is the eigenvalue of the second

kind of the supermatrix M. In this case, the method of simplification of the characteristic
function, proposed in [1], is effective. However, this method is not effective in the case of an
(1 + 1) × (1 + 1) non-separable supermatrix M. In that case, the minimum polynomial m(x)

of M can be of every possible degree, that is

1 � deg m(x) � 4 = deg P(x).

Furthermore, in the case of (1 + 1) × (1 + 1) non-separable supermatrix, the minimum
polynomial is in general not unique, according to the following general result.

Theorem 3.1. For every supermatrix M over � = �p,p � +∞, if M = M̄ +MN and mM0(x)

is the minimum polynomial of the numeric part M0, then

σmM̄(M) = 0

where σ ∈ �0̄ is an element annihilating all non-invertible elements in �.

Proof. Let M = M̄ +MN be an (m+n)×(m+n) supermatrix, when M̄ is an (m+n)×(m+n)-
matrix over C, called the numeric part of M. Let

m(t) = tk + ak−1t
k−1 + · · · + a1t + a0

where a0, a1, . . . , ak−1 ∈ C, k � m + n, be the minimum polynomial of M̄ . We consider the
polynomial

m(M) = Mk + ak−1M
k−1 + · · · + a1M + a0I.

We observe that

Ml = (M̄ + MN)l = M̄l + M(N,l) l = 1, 2, . . . , k

where M(N,l) is an (m + n) × (m + n)-supermatrix having all its elements nilpotent, as it is a
finite sum of supermatrices which are products of supermatrices with the term MN appearing
at least once. Therefore, we have

σM(N,l) = 0 (3.1)

for every l = 1, 2, . . . , k, where σ is an even Grassmann number annihilating all nilpotent
elements in �.

Finally, we write

m(M) = (M̄k + ak−1M̄
k−1 + · · · + a0I) + M(N,k) + ak−1M(N,k−1) + · · · + a1M(N,1)

= m(M̄) + M(N,k) + ak−1M(N,k−1) + · · · + a1M(N,1)

= M(N,k) + ak−1M(N,k−1) + · · · + a1M(N,1)

and therefore by (3.1) it is obvious that

σm(M) = 0. �

From all the above, we have proved the following theorem concerning the case of
(1 + 1) × (1 + 1)-supermatrices.

Theorem 3.2. Let

M =
[
p α

β q

]
p, q ∈ �0̄ α, β ∈ �1̄

be the arbitrary (1 + 1) × (1 + 1)-supermatrix with the characteristic function

h(x) = (x − p)(x − q) − αβ

(x − q)2
= (x − p)2

(x − p)(x − q) + αβ
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and the characteristic polynomial

P(x) = (x − p)2(x − q)2.

Then one has the following cases:

• If M is separable, then the minimum polynomial of M is of the form

m(x) =
(

x − p +
αβ

q − p

) (
x − q +

αβ

q − p

)

where p − αβ

q−p
and q − αβ

q−p
are the eigenvalues of M of the first and second kinds,

respectively.
• If M is not separable, i.e. p̄ = q̄ , but p �= q , then the minimum polynomial of M is of the

form

m(x) = (x − p)2(x − q)2.

• If M is not separable and p = q , then the minimum polynomial of M is of the form

m(x) =


(x − p)3 when αβ �= 0
(x − p)2 when αβ = 0
(x − p) when α = β = 0.

• If M is non-separable its minimum polynomial is in general not unique.

4. The general case

We consider the arbitrary (m + n) × (m + n)-supermatrix

M =
[
A B

C D

]
with characteristic function given by (2.17) as

h(x) = F̃ (x)

G̃(x)
= F(x)

G(x)

and characteristic polynomial given by (2.18) as

P(x) = F̃ (x)G(x) = F(x)G̃(x).

Suppose that m(x) is the minimum polynomial of M, that is, a monic null polynomial of
M of the least possible degree. Then deg m(x) � deg P(x). According to the Euclidean
algorithm [17], applied to P(x) and m(x) in the ring of polynomials �0̄[x], there exist unique
polynomials �(x) and v(x) such that

P(x) = m(x)�(x) + v(x) (4.1)

and deg v(x) < deg m(x) or v(x) = 0. Since P(x) and m(x) are null polynomials of M, if
v(x) �= 0, then v(x) will be a null polynomial of M of degree less than the degree of m(x),
which is absurd. Hence v(x) = 0 and therefore m(x) divides P(x).

We note that �0̄[x] is not a unique factorization ring. In particular, factors u(x)2r of even
degree can be written as

u(x)2r = [u(x)r + θv(x)][u(x)r − θv(x)] (4.2)

where θ ∈ �0̄ with θ2 = 0 and v(x) is arbitrary in �0̄[x]. From the previous discussion we
have that m(x) must be a product of factors taken from a factorization of the characteristic
polynomial P(x). Some factors can be of the form given in the right-hand side of (4.2).



9192 A G Fellouris and L K Matiadou

Therefore from the above discussion, theorem 3.1 and the work of Urrutia and Morales [1]
and [16], we have proved the general theorem for the minimum polynomial of the arbitrary
(m + n) × (m + n) supermatrix M. It can be stated as follows.

Theorem 4.1. Let

M =
[
A B

C D

]
be the arbitrary (m + n) × (m + n)-supermatrix with the characteristic polynomial

P(x) = F̃ (x)G(x) = a(x)n+1d(x)m+1

where

a(x) = det(xI − A) d(x) = det(xI − D).

Let

a1(x), a2(x), . . . , ar(x) and d1(x), d2(x), . . . , ds(x)

be the irreducible factors of the polynomials a(x), d(x) so that

a(x) = a1(x)i1a2(x)i2 . . . ar(x)ir

d(x) = d1(x)j1d2(x)j2 . . . ds(x)js .

Then P(x) is a null polynomial of M. The minimum polynomial m(x) of M divides P(x) and
is of the form

m(x) = m1(x)m2(x) . . .mk(x)

where mi(x), i = 1, 2, . . . , k is one of the following factors:

aµ(x)kµ, dν(x)lν , 0 � kµ � iµ(n + 1), 0 � lν � jν(m + 1)

A(x)D(x) ± θω(x)

where

θ ∈ �0̄ with θ2 = 0

ω(x) ∈ �0̄[x] with deg ω(x) � deg A(x)D(x)

A(x) =
r∏

µ=1

aµ(x)kµ D(x) =
s∏

ν=1

dν(x)lν

0 � kµ � iµ(n + 1) 0 � lν � jν(m + 1).

In the following, we provide some examples to explain the arbitrariness of the selection
of factors for the construction of the minimum polynomial of a supermatrix M for any possible
factorization of the characteristic polynomial.

Example 1. For the supermatrix [1],

M =




0 0 0 θ1

0 1 θ2 0
0 θ1 −1 0
θ2 0 0 0


 (4.3)

with θ1, θ2 ∈ �1̄, we have

F̃ (x) = x3(x + 1)2(x − 1) + θx(x + 1) where θ = θ1θ2

G̃(x) = x3(x + 1)3

F(x) = x3(x − 1)3

G(x) = x3(x − 1)2(x + 1) − θx(x − 1).
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Using the common factors R, S, the minimum polynomial is determined as

Q(x) = x6 + θx5 − x4.

However, using an alternative approach based on all factors involved in the definition of
the characteristic polynomial, one is able to find a null monic polynomial of the supermatrix
M of degree lower than 6. More explicitly, we have

a(x) = x(x − 1)

d(x) = x(x + 1)

F̃ (x) = x(x + 1)[x2(x2 − 1) + θ ]

G(x) = x(x − 1)[x2(x2 − 1) − θ ].

Thus the characteristic polynomial is

P(x) = F̃ (x)G(x) = x2(x − 1)(x + 1)[x2(x2 − 1) + θ ][x2(x2 − 1) − θ ]

= x6(x − 1)3(x + 1)3.

We observe that

M(M + I)[M2(M2 − I) + θI ] = 0 (4.4)

M(M − I)[M2(M2 − I) − θI ] = 0. (4.5)

Thus, we find for the supermatrix M, the null polynomials

P1(x) = x(x + 1)[x2(x2 − 1) + θ ]

P2(x) = x(x − 1)[x2(x2 − 1) − θ ]

as well as the null polynomials

Q1(x) = 1
2 (P1(x) + P2(x)) = x6 − x4 + θx

Q2(x) = 1
2 (P1(x) − P2(x)) = x5 − x3 + θx2.

Hence, we have determined a null monic polynomial Q2(x) of the supermatrix M such that

degree Q2(x) < degree Q(x).

Moreover, we have that

Q2(x) = x2[x(x + 1)(x − 1) + θ ]

which is a product of factors of the characteristic polynomialP(x), because of the factorization

P(x) = x2(x2 − 1)2x4(x2 − 1)

= [x(x2 − 1) + θ ][x(x2 − 1) − θ ]x4(x2 − 1).

Finally, we check that an equality of the form

M4 + k3M
3 + k2M

2 + k1M + k0I = 0

with k0, k1, k2, k3 in �0̄ is impossible. Hence, the polynomial Q2(x) is a null polynomial of
M of the least possible degree.

Moreover, the minimum polynomial of the numeric part M̄ of M is given by

mM̄(x) = x(x + 1)(x − 1).

Hence, according to the theorem 3.1 every polynomial of the form

Q2(x) + λθmM̄(x) λ ∈ C
is a monic null polynomial of M of minimum degree.
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Example 2. For the supermatrix

M =




θ 0 0 θ1

0 θ θ2 0
0 0 1 0
0 0 0 0


 (4.6)

where θ1, θ2 ∈ �1 and θ = θ1θ2, we have

a(x) = (x − θ)2 d(x) = x(x − 1)

F̃ (x) = x2(x − 1)2(x − θ)2 G̃(x) = x3(x − 1)3

F(x) = (x − θ)6 G(x) = x(x − 1)(x − θ)4.

Thus we obtain

F̃

G̃
= x2(x − 1)2(x − θ)2

x3(x − 1)3
= (x − θ)2

x(x − 1)
= x2 − 2θx

x(x − 1)
= x − 2θ

x − 1
= f̃

g̃

F

G
= (x − θ)6

x(x − 1)(x − θ)4
= (x − θ)2

x(x − 1)
= x − 2θ

x − 1
= f

g
.

The polynomial that is obtained according to the method proposed in [1], is the polynomial

Q(x) = f̃ g = f g̃ = (x − 1)(x − 2θ)

which unfortunately is not a null polynomial of the supermatrix M. However, using factors
from the polynomial

P(x) = F̃ (x)G(x) = x3(x − 1)3(x − θ)6

we find the null monic polynomials of degree 3

P1(x) = x(x − 1)(x − θ) = x3 − (1 + θ)x2 + θx

P2(x) = x2(x − 1) = x3 − x2.

Their difference

P2(x) − P1(x) = θx2 − θx = θx(x − 1) (4.7)

is a null polynomial of M of degree 2, but it is not a monic polynomial.
Moreover, in this example we have an application of theorem 3.1. The minimum

polynomial of the numeric part M̄ is mM̄(x) = x(x − 1) and thus the two null polynomials of
degree 3 are related by

P1(x) = P2(x) − θmM̄(x)

where θ = θ1θ2 ∈ �0̄.
Moreover, we can check directly that there does not exist a null monic polynomial of the

supermatrix M of degree two, that is, any equation of the form

M2 + uM + vI = 0 u, v ∈ �0̄

is impossible.
Therefore, we can consider as the minimum polynomial of the supermatrix M one of the

polynomials

P1(x) = x(x − 1)(x − θ) P2(x) = x2(x − 1).

The polynomial P1(x) contains all linear factors of the characteristic polynomial P(x),
while the polynomial P2(x) does not contain all linear factors of P(x). However, both
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polynomials P1(x) and P2(x) can be constructed as products of factors selected from the
characteristic polynomial P(x) = x3(x − 1)3(x − θ)6.

Example 3. We consider the supermatrix

M =




1 0 0 θ1

0 0 θ2 0
0 θ1 0 0
θ2 0 0 0


 (4.8)

given in [1], for which with the method proposed in [1], we find first the null monic polynomial

Q1(x) = x6 − (1 + 2θ)x5 + θx3.

However, as noted in [1], some accidental cancellations which occur in this case, that are
not possible to describe in general, lead finally to a lower degree null monic polynomial

Q(x) = x4 − (1 + 2θ)x3 + θx.

We note that in this example we have

a(x) = x(x − 1) d(x) = x2

F̃ (x) = x3[x2(x − 1) − θ ] G̃(x) = x6

F(x) = x3(x − 1)3 G(x) = x2(x − 1)[x2(x − 1) + θ ].

Alternatively, we have the characteristic polynomial

P(x) = F̃ (x)G(x) = x3(x − 1)[x2(x − 1) − θ ][x2(x − 1) + θ ] = x9(x − 1)3

and using factors from this polynomial we find the null monic polynomial of the supermatrix
M,

m(x) = x4 − x3 − θx = x[x2(x − 1) − θ ]

which is of the same degree as the polynomial P(x). Moreover, it is a product of factors
selected from the following factorization of the characteristic polynomial:

P(x) = x9(x − 1)3 = x5x4(x − 1)2(x − 1)

= x5[x2(x − 1) − θ ][x2(x − 1) + θ ](x − 1).

The same is true for the polynomial Q(x) according to the factorization

Q(x) = x4 − (1 + 2θ)x + θx = x[x2(x − 1) − θ(2x2 − 1)]

and

P(x) = x9(x − 1)3 = x5(x − 1)[x2(x − 1)]2

= x5(x − 1)[x2(x − 1) − θ(2x2 − 1)][x2(x − 1) + θ(2x2 − 1)].

Moreover, we can write

Q(x) = m(x) − 2θx(x − 1)(x + 1).

The difference

m(x) − Q(x) = 2θx(x − 1)(x + 1)

is a polynomial annihilating M, but it is not a monic polynomial.
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We consider the numeric part M̄ of the supermatrix M, i.e. the matrix formed by the
numeric parts of the entries of M. We have

M̄ =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 .

It has characteristic polynomial XM̄ (x) = x3(x − 1) and minimum polynomial mM̄(x) =
x(x − 1). Therefore we have the equation

m(x) = Q(x) + 2θ(x + 1)mM̄(x).

5. Summary

For an arbitrary supermatrix M there has been introduced by Urrutia and Morales [1] two
types of null polynomials, thus providing an extension of the Cayley–Hamilton theorem for
supermatrices.

The first one is the so-called characteristic polynomial P(x), which is directly associated
with the supermatrix M independent of the factorization of the numerator and denominator of
the rational function s det(xI − M).

The second is the polynomial Q(x) which has been introduced as the minimum polynomial
of the supermatrix M. Its definition depends on the existence of a maximum common divisor
of the polynomials F̃ (x) and G̃(x) or F(x) and G(x) which are the building blocks of
s det(xI − M). However, because of the elimination of the common factors R and S from the
polynomials F̃ (x) and G̃(x) or F(x) and G(x) we miss the possibility of choosing factors
for the construction of a minimum polynomial of M from the complete set of divisors of the
polynomials F̃ (x) and G̃(x) or F(x) and G(x). It has been shown here that using factors
from F̃ (x) and G̃(x) or F(x) and G(x), it is possible to determine a null polynomial of M of
a degree lower than the degree of the polynomial Q(x).

The case of (1 + 1) × (1 + 1) supermatrices has been studied completely. The form of the
minimum polynomial has been described in the general case of (m+n)×(m+n) supermatrices.
Since the minimum polynomial divides the characteristic polynomial, this can be constructed
as a product of factors arising from any possible factorization of the characteristic polynomial.
The minimum polynomial does not necessarily contain all linear factors involved in a particular
factorization of the characteristic polynomial (example 2), a result which is due to the nature of
the elements of the off-diagonal blocks B and C, which are nilpotent of degree 2. In addition,
as a consequence of theorem 3.1, we get that the null polynomial of minimum degree of a
supermatrix is not necessarily unique.
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