On the minimum polynomial of supermatrices

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 359183
(http://iopscience.iop.org/0305-4470/35/43/313)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.109
The article was downloaded on 02/06/2010 at 10:35

Please note that terms and conditions apply.

On the minimum polynomial of supermatrices

Anargyros G Fellouris and Lina K Matiadou
Department of Mathematics and Physical Sciences, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece
E-mail: afellou@math.ntua.gr

Received 26 April 2002, in final form 29 July 2002
Published 15 October 2002
Online at stacks.iop.org/JPhysA/35/9183

Abstract

In this paper, a new selection of factors for the construction of the minimum polynomial of a supermatrix M is proposed, leading to null polynomials of M of lower degree than the degree of the corresponding polynomial obtained by using the method proposed in the work of Urrutia and Morales [1]. The case of $(1+1) \times(1+1)$ supermatrices has been completely discussed. Moreover, the main theorem concerning the construction of the minimum polynomial as a product of factors from the characteristic polynomial in the general case of $(m+n) \times(m+n)$ supermatrices is given. Finally, we prove that the minimum polynomial of a supermatrix M, in general, is not unique.

PACS numbers: 02.10.Yn, 02.10.-v, 02.20.-a

1. Introduction

For any matrix M over the field $F, F=\mathcal{R}$ or \mathcal{C}, its characteristic polynomial is defined by $\mathcal{X}_{M}(t)=\operatorname{det}(t I-M)$, where I is the $n \times n$ identity matrix. According to the Cayley-Hamilton theorem, every matrix M satisfies its characteristic polynomial, that is, if we substitute the indeterminate t by the matrix M using $t^{0}=I$, the produced polynomial matrix $\mathcal{X}_{M}(M)$ is the zero matrix. The characteristic polynomial can be written in the form

$$
\begin{equation*}
\mathcal{X}_{M}(t)=t^{n}+c_{n-1} t^{n-1}+\cdots+c_{1} t+c_{0} \tag{1.1}
\end{equation*}
$$

with $c_{0}, c_{1}, \ldots, c_{n-1} \in F$. The coefficients $c_{0}, c_{1}, \ldots, c_{n-1}$ are invariants of the matrix M under similarity and they can be written in terms of traces of M and its powers M^{2}, \ldots, M^{n-1}. Especially, we have

$$
\begin{equation*}
c_{0}=(-1)^{n} \operatorname{det} M \quad c_{n-1}=-\operatorname{tr} M \tag{1.2}
\end{equation*}
$$

The Cayley-Hamilton theorem has found many interesting applications as follows:

- in the construction of the so-called skein relations, which are relevant to the calculation of expectation values, and in the process of reduction of the phase space [2];
- in the $(2+1)$-dimensional Chern-Simons theories [3];
- in the discussion of the reduced phase space of the de Sitter gravity in $(2+1)$ dimensions, which is equivalent to the Chern-Simons theory of the group $\operatorname{SO}(2,2)$ [4];
- in the reduction of phase space in the case of $(2+1)$ super de Sitter gravity, which is the Chern-Simons theory of the supergroup $\operatorname{Osp}(1 / 2, \mathcal{C})$ [5];
- in the study of loop representations in quantum supergravity in terms of a GSU(2) connection, in order to state that any product of Wilson loops can be expressed as a linear combination of Wilson loops [6].
This paper is motivated from the work of Urrutia and Morales [1], where the CayleyHamilton theorem for supermatrices is discussed and a method for the construction of the minimum polynomial of a supermatrix is introduced. In section 2, we introduce our notation concerning all well-known material on Grassmann algebras, supermatrices and their characteristic polynomial.

In section 3 , we study completely the case of $(1+1) \times(1+1)$ supermatrices. We determine the minimum polynomial of the arbitrary $(1+1) \times(1+1)$ supermatrix (theorem 3.2) and prove that it is, in general, not unique.

In section 4, we include our proposal on the construction of null polynomials for a supermatrix M, which gives the possibility of constructing a null polynomial of a supermatrix M of degree less than the degree of the corresponding minimum polynomial introduced by the method proposed by Urrutia and Morales [1].

We prove that the minimum polynomial of a supermatrix is a divisor of its characteristic polynomial and state the general theorem. We use three examples to describe the general situation on the minimum polynomial of a supermatrix.

2. Null polynomials for supermatrices

Let Λ_{p} denote the Grassmann algebra on $p<+\infty$ mutually anticommuting generators, over the field F of scalars (i.e. the real or complex numbers). Λ_{p} can be written as the direct sum of two subspaces $\Lambda_{p, \overline{0}} \oplus \Lambda_{p, \overline{1}}$, where $\Lambda_{p, \overline{0}}$ (resp. $\Lambda_{p, \overline{1}}$) is the even (resp. odd) part of Λ_{p} and consists of all linear combinations of products of an even (resp. odd) number of generators. $\Lambda_{p, \overline{0}}$ contains the identity $\mathbf{1}$ and its elements commute with the elements of Λ_{p}. The elements of $\Lambda_{p, \overline{1}}$ mutually anticommute.

Alternatively, Λ_{p} can be written as the direct sum $\Lambda_{p}=F \bigoplus \Lambda_{p, N}$ where F is the field of scalars and $\Lambda_{p, N}$ consist of all linear combinations of a non-zero number of generators. Thus, any element $\alpha \in \Lambda$ is a sum of the form $\alpha=\bar{\alpha}+s(\alpha)$ where $\bar{\alpha} \in F$ is the body or numeric part of α and $s(\alpha)$ is the soul or nilpotent part of α. The elements of $\Lambda_{p, N}$ are nilpotent with degree of nilpotency less than or equal to p. The invertible elements of Λ_{p} are of the form $f \mathbf{1}+n$, where $f \neq 0$ and $n \in \Lambda_{p, N}$ and constitute a subgroup Λ_{p}^{*} of Λ_{p}. For further details, see [7].

Rogers in [8] has shown that Λ_{p} has a norm which gives it the structure of a Banach algebra. Rogers further has shown that p can be taken to be infinity and in that case Λ_{∞} consists of all those linear combinations of products, with a finite number of factors in each product, from a countable set of anticommuting generators, which have a finite norm. Λ_{∞} is a Banach algebra which retains some but not all of the algebraic properties of Λ_{p} for $p<\infty$. For example, the elements in $\Lambda_{\infty, \overline{0}}$ commute with all elements of Λ_{∞}, the elements of $\Lambda_{\infty, \overline{1}}$ mutually anticommute and they are nilpotent of degree 2 . In general, the elements of $\Lambda_{\infty, N}$ are not nilpotent in the algebraic sense, but they are topologically nilpotent, see [8]. In the following we use Λ, instead of $\Lambda_{p}, p \leqslant \infty$.

Let

$$
M=\left[\begin{array}{ll}
A & B \tag{2.1}\\
C & D
\end{array}\right]
$$

be a supermatrix over Λ, of type $(m+n) \times(m+n)$, i.e. $A($ resp. $D)$ is an $m \times m$ (resp. $n \times n$) matrix whose entries belong to $\Lambda_{\overline{0}}$ and B (resp. C) is an $m \times n$ (resp. $n \times m$) matrix whose entries belong to $\Lambda_{\overline{1}}$. The set of all supermatrices of the form (2.1) is denoted by $\mathcal{M}(m, n ; \Lambda)$ and it is the even part of the Grassmannification of the Lie superalgebra $\mathcal{M}(m, n ; F)$ given by $\Lambda \otimes \mathcal{M}(m, n ; F)$, i.e.

$$
\begin{aligned}
\mathcal{M}(m, n ; \Lambda) & =(\Lambda \otimes \mathcal{M}(m, n ; F))_{\overline{0}} \\
& =\left(\Lambda_{0} \otimes \mathcal{M}(m, n ; F)_{\overline{0}}\right) \oplus\left(\Lambda_{1} \otimes \mathcal{M}(m, n ; F)_{\overline{1}}\right)
\end{aligned}
$$

a form which explicitly displays the decomposition into diagonal and off-diagonal components. It is called the Grassmann envelope [9] of the Lie superalgebra $\mathcal{M}(m, n ; F)$.

It is known from the work of Nieuwenhuizen [10] that the supermatrix M is invertible if and only if A and D are invertible, which is the case if and only if the matrices \bar{A} and \bar{D} formed from the numeric components (bodies) of the entries in A and D are invertible. Explicitly, we have the following two equivalent forms [11]:

$$
\begin{align*}
M^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B\left(D-C A^{-1} B\right)^{-1} C A^{-1} & -A^{-1} B\left(D-C A^{-1} B\right)^{-1} \\
-\left(D-C A^{-1} B\right)^{-1} C A^{-1} & \left(D-C A^{-1} B\right)^{-1}
\end{array}\right] \\
=\left[\begin{array}{cc}
\left(A-B D^{-1} C\right)^{-1} & -\left(A-B D^{-1} C\right)^{-1} B D^{-1} \\
-D^{-1} C\left(A-B D^{-1} C\right)^{-1} & D^{-1} C\left(A-B D^{-1} C\right)^{-1} B D^{-1}+D^{-1}
\end{array}\right] . \tag{2.2}
\end{align*}
$$

There is a linear $\Lambda_{\overline{0}}$-valued function on the set of all supermatrices $\mathcal{M}(m, n ; \Lambda)$, called supertrace and defined by

$$
\begin{equation*}
\operatorname{str} M=\operatorname{tr} A-\operatorname{tr} D \tag{2.3}
\end{equation*}
$$

where the trace function is the usual sum of the diagonal elements of a square matrix (see Arnowitt et al [12]).

The superdeterminant or Berezinian of a supermatrix M is a $\Lambda_{\overline{0}}$-valued function defined by

$$
\begin{equation*}
s \operatorname{det} M=(\operatorname{det} A) \operatorname{det}^{-1}\left(D-C A^{-1} B\right) \tag{2.4}
\end{equation*}
$$

for invertible supermatrices. An equivalent formula of the superdeterminant is [13]

$$
\begin{equation*}
s \operatorname{det} M=\operatorname{det}\left(A-B D^{-1} C\right) \operatorname{det}^{-1} D \tag{2.5}
\end{equation*}
$$

In the following, we use polynomials from the ring of polynomials $\Lambda_{\overline{0}}[x]$, which is not an integral domain [14]. We denote by $\mathcal{R}=s\left(\Lambda_{\overline{0}}\right)[x]$ the set of nilpotent elements of $\Lambda_{\overline{0}}[x]$. It is the smallest prime ideal of $\Lambda_{\overline{0}}[x]$. The ratio of polynomials is an element of the quotient ring, the localization of $\Lambda_{\overline{0}}[x]$ at the minimal prime ideal. It is defined by

$$
\begin{equation*}
\Lambda_{\overline{0}}(x)=\Lambda_{\overline{0}}[x]_{\mathcal{R}}=\left\{\frac{f}{g}: f, g \in \Lambda_{\overline{0}}[x], g \notin \mathcal{R}\right\} \tag{2.6}
\end{equation*}
$$

$\Lambda_{\overline{0}}(x)$ is the even part of the \mathcal{Z}_{2}-graded algebra

$$
\begin{equation*}
\Lambda(x)=\left\{\frac{f}{g}: f \in \Lambda[x], g \in \Lambda_{\overline{0}}[x], g \notin \mathcal{R}\right\} \tag{2.7}
\end{equation*}
$$

where $\Lambda[x]$ is the ring of polynomials over the Grassmann algebra Λ.
The body \bar{f} of a polynomial

$$
\begin{equation*}
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{0} \tag{2.8}
\end{equation*}
$$

in $\Lambda[x]$ or in $\Lambda_{\overline{0}}[x]$ is defined by

$$
\begin{equation*}
\bar{f}(x)=\bar{a}_{0} x^{n}+\bar{a}_{1} x^{n-1}+\cdots+\bar{a}_{n-1} x+\bar{a}_{0} . \tag{2.9}
\end{equation*}
$$

A polynomial $f(x) \in \Lambda[x]$ is invertible, if $\bar{f} \neq 0$.
For a rational function $h(x)=\frac{f(x)}{g(x)} \in \Lambda_{\overline{0}}(x)$ and $w \in \Lambda_{\overline{0}}$ we have

$$
h(w)= \begin{cases}\frac{f(w)}{g(w)} & \text { if } \overline{g(w)} \neq 0 \tag{2.10}\\ \text { it is not defined } & \text { otherwise }\end{cases}
$$

$w \in \Lambda_{0}$ is a zero of h, if $h(w)=0, w \in \Lambda_{0}$ is a pole of h, if h is invertible and $h^{-1}(w)=0$.
Any supermatrix of the form (2.1) can be written as

$$
\begin{equation*}
M=\bar{M}+s(M) \tag{2.11}
\end{equation*}
$$

where

$$
\bar{M}=\left[\begin{array}{cc}
\bar{A} & 0 \tag{2.12}\\
0 & \bar{D}
\end{array}\right] \quad s(M)=\left[\begin{array}{cc}
s(A) & B \\
C & s(D)
\end{array}\right]
$$

with $\bar{A}=\left(\bar{a}_{i j}\right), \bar{D}=\left(\bar{d}_{i j}\right), s(A)=\left(s\left(a_{i j}\right)\right), s(D)=\left(s\left(d_{i j}\right)\right)$.
An even vector is a column

$$
\begin{equation*}
X_{0}=\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{m+n}\right)^{T} \tag{2.13}
\end{equation*}
$$

where $x_{i} \in \Lambda_{\overline{0}}$, for $i=1,2, \ldots, m$, and $x_{i} \in \Lambda_{\overline{1}}$, for $i=m+1, \ldots, m+n$.
An odd vector is a column

$$
\begin{equation*}
X_{1}=\left(x_{1}, \ldots, x_{m}, x_{m+1}, \ldots, x_{m+n}\right)^{T} \tag{2.14}
\end{equation*}
$$

where $x_{i} \in \Lambda_{\overline{1}}$, for $i=1,2, \ldots, m$, and $x_{i} \in \Lambda_{\overline{0}}$, for $i=m+1, \ldots, m+n$. The number $\lambda \in \Lambda_{\overline{0}}$ is an eigenvalue of the supermatrix M [15], if there exists a vector X of the form (2.13) or (2.14) with $\bar{X} \neq 0$ such that

$$
\begin{equation*}
M X=\lambda X \tag{2.15}
\end{equation*}
$$

The eigenvalue λ is of the first (resp. second) kind, if the corresponding eigenvector X is even (resp. odd) [15].

The supermatrix M of the form (2.1) is called separable or generic [9], if the eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ of \bar{A} and the eigenvalues $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ of \bar{D} are all different. Then M has eigenvalues $a_{1}, a_{2}, \ldots, a_{m}$ of the first kind such that $\bar{a}_{1}=\alpha_{1}, \bar{a}_{2}=\alpha_{2}, \ldots, \bar{a}_{m}=\alpha_{m}$, and eigenvalues $d_{1}, d_{2}, \ldots, d_{n}$ of the second kind such that $\bar{d}_{1}=\delta_{1}, \bar{d}_{2}=\delta_{2}, \ldots, \bar{d}_{n}=\delta_{n}$. Moreover, there exists an invertible supermatrix N such that

$$
\begin{equation*}
N M N^{-1}=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{m}, d_{1}, d_{2}, \ldots, d_{n}\right) \tag{2.16}
\end{equation*}
$$

The characteristic function of a supermatrix M given by (2.1) is a rational function of an even Grassmann indeterminant x defined by Kobayashi and Nagamachi [14], as follows

$$
\begin{equation*}
h(x)=s \operatorname{det}(x I-M)=\frac{F(x)}{G(x)}=\frac{\tilde{F}(x)}{\tilde{G}(x)} \tag{2.17}
\end{equation*}
$$

where we have

$$
\begin{aligned}
& F(x)=\operatorname{det}(x I-A)^{n+1} \\
& G(x)=\operatorname{det}\left[\operatorname{det}(x I-A)(x I-D)-C\left(\operatorname{det}(x I-A)(x I-A)^{-1} B\right]\right. \\
& \tilde{F}(x)=\operatorname{det}\left[\operatorname{det}(x I-D)(x I-A)-B\left(\operatorname{det}(x I-D)(x I-D)^{-1} C\right]\right. \\
& \tilde{G}(x)=\operatorname{det}(x I-D)^{m+1}
\end{aligned}
$$

Then, the characteristic polynomial $P(x)$ of the supermatrix M is defined as [1]

$$
\begin{equation*}
P(x)=\tilde{F}(x) G(x)=F(x) \tilde{G}(x)=a(x)^{n+1} d(x)^{m+1} \tag{2.18}
\end{equation*}
$$

where we have put

$$
\begin{align*}
& a(x)=\operatorname{det}(x I-A) \tag{2.19}\\
& d(x)=\operatorname{det}(x I-D) \tag{2.20}
\end{align*}
$$

The well-known Cayley-Hamilton theorem for a usual real or complex matrix is also valid for supermatrices with the characteristic polynomial $P(x)$ defined by (2.18) [16].

Urrutia and Morales [1] in their attempt to determine for the supermatrix M, given by (2.1), its minimum polynomial, that is, a monic null polynomial $Q(x)$ of the least possible degree, such that $Q(M)=0$, define the polynomial

$$
\begin{equation*}
Q(x)=\tilde{f}(x) g(x)=f(x) \tilde{g}(x) \tag{2.21}
\end{equation*}
$$

where $f, \tilde{f}, g, \tilde{g}$ are coming from the relations

$$
\begin{equation*}
\tilde{F}=R \tilde{f} \quad \tilde{G}=R \tilde{g} \quad F=S f \quad G=S g \tag{2.22}
\end{equation*}
$$

where R (resp. S) is a common divisor of maximum degree of the pair \tilde{F}, \tilde{G} (resp. F, G).
The polynomial $Q(x)$ is a null polynomial of the supermatrix M, for any common factors R and S satisfying (2.22) ([1], theorem 3.2).

Our unease, for the consideration of the common factors R, S, is that their elimination in the definition of the polynomial $Q(x)$, even it leads to a null polynomial of the supermatrix M of lower degree than the characteristic polynomial $P(x)$, has the disadvantage that it eliminates some factors involved in the computation of the superdeterminant, as well as in the definition of the characteristic polynomial $P(x)$. It looks possible sometimes, using factors from the characteristic polynomial $P(x)$, the factors of R, S included, to construct a null monic polynomial of the supermatrix M of lower degree than the degree of the polynomial $Q(x)$.

Next, we prove that the assertion of Urrutia and Morales ([1], theorem 3.2), that the polynomial $Q(x)$ given by (2.21) is a null polynomial of the supermatrix M does not generally work, even if we consider the simplest case of $(1+1) \times(1+1)$ supermatrices.

3. The case of $(1+1) \times(1+1)$ supermatrices

We consider the arbitrary $(1+1) \times(1+1)$ supermatrix

$$
M=\left[\begin{array}{ll}
p & \alpha \\
\beta & q
\end{array}\right] \quad p, q \in \Lambda_{\overline{0}} \quad \alpha, \beta \in \Lambda_{\overline{1}}
$$

Then we have

$$
\begin{array}{ll}
\tilde{F}(x)=(x-p)(x-q)-\alpha \beta & \tilde{G}(x)=(x-q)^{2} \\
F(x)=(x-p)^{2} & G(x)=(x-p)(x-q)+\alpha \beta .
\end{array}
$$

Bearing in mind that $\Lambda_{\overline{0}}[x]$ is not a unique factorization ring and following factorizations and the Euclidean algorithm [13], we consider the cases:

Case $1(p \neq q)$. We now distinguish the cases:
Case la $(\bar{p} \neq \bar{q}, \alpha \beta \neq 0)$. Then following the factorization theory developed in [13] we have

$$
\begin{aligned}
& \tilde{F}(x)=(x-p)(x-q)-\alpha \beta=\left(x-p+\frac{\alpha \beta}{q-p}\right)\left(x-q-\frac{\alpha \beta}{q-p}\right) \\
& \tilde{G}(x)=(x-q)^{2}=\left(x-q+\frac{\alpha \beta}{q-p}\right)\left(x-q-\frac{\alpha \beta}{q-p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F(x)=(x-p)^{2}=\left(x-p+\frac{\alpha \beta}{q-p}\right)\left(x-p-\frac{\alpha \beta}{q-p}\right) \\
& G(x)=(x-p)(x-q)+\alpha \beta=\left(x-p-\frac{\alpha \beta}{q-p}\right)\left(x-q+\frac{\alpha \beta}{q-p}\right)
\end{aligned}
$$

We note that the factorization of the polynomials $\tilde{F}(x), G(x)$ is unique, while the factorization of $\tilde{G}(x), F(x)$, which is not unique, has been chosen in the given form in order to obtain the common factors:

$$
R=x-q-\frac{\alpha \beta}{q-p} \quad S=x-p-\frac{\alpha \beta}{q-p}
$$

The characteristic function $h(x)$ is simplified to the form

$$
h(x)=\frac{\tilde{f}}{\tilde{g}}=\frac{f}{g}=\frac{x-p+\frac{\alpha \beta}{q-p}}{x-q+\frac{\alpha \beta}{q-p}} .
$$

Thus, we have the characteristic polynomial

$$
P(x)=\tilde{F}(x) G(x)=F(x) \tilde{G}(x)=(x-p)^{2}(x-q)^{2}
$$

and the polynomial

$$
Q(x)=\tilde{f}(x) g(x)=f(x) \tilde{g}(x)=\left(x-p+\frac{\alpha \beta}{q-p}\right)\left(x-q+\frac{\alpha \beta}{q-p}\right)
$$

which is a monic null polynomial of the supermatrix M. It can easily be checked that the polynomial $Q(x)$ is the minimum polynomial of the supermatrix M and that it is unique.
Case $1 b(\bar{p} \neq \bar{q}, \alpha \beta=0)$. Then we have

$$
\begin{aligned}
& P(x)=\tilde{F}(x) G(x)=F(x) G(x)=(x-p)^{2}(x-q)^{2} \\
& R(x)=x-p \quad S(x)=x-q
\end{aligned}
$$

and the polynomial of degree two

$$
Q(x)=\tilde{f}(x) g(x)=f(x) \tilde{g}(x)=(x-p)(x-q)
$$

is, in fact, the minimum polynomial of the supermatrix M.
Case 1c $(\bar{p}=\bar{q}, \alpha \beta \neq 0)$. Then we have
$P(x)=\tilde{F}(x) G(x)=F(x) \tilde{G}(x)=(x-p)^{2}(x-q)^{2} \quad R(x)=1 \quad S(x)=1$.
The characteristic function cannot be simplified and the degree-four polynomial

$$
Q(x)=(x-p)^{2}(x-q)^{2}=P(x)
$$

is the minimum polynomial of the supermatrix M.
Case $2(p=q)$. We distinguish the cases:
Case $2 a(\alpha \beta \neq 0)$. Then we have the characteristic function

$$
h(x)=\frac{\tilde{F}(x)}{\tilde{G}(x)}=\frac{(x-p)^{2}-\alpha \beta}{(x-p)^{2}}=\frac{(x-p)^{2}}{(x-p)^{2}+\alpha \beta}=\frac{F(x)}{G(x)}
$$

and the characteristic polynomial

$$
P(x)=(x-p)^{4}=Q(x)
$$

because the characteristic function cannot be simplified. Clearly, $Q(x)$ is a null polynomial of the supermatrix M. However, we can check that the minimum polynomial of M is the third degree polynomial

$$
m(x)=(x-p)^{3}
$$

Moreover, we can check that $m(x)$ is not unique, as we can easily verify that the minimum polynomial $m_{\bar{M}}(x)=x-\bar{p}$ of the numeric part \bar{M} of the supermatrix M, multiply by a factor $\sigma \in \Lambda_{\overline{0}}$ annihilating all nilpotent elements in $\Lambda_{\overline{0}}$, is also a null polynomial of M. Therefore, we have a family of monic null polynomials of the supermatrix M of degree three

$$
m(x)+\kappa \sigma m_{\bar{M}}(x)=(x-p)^{3}+\kappa \sigma(x-\bar{p}) \quad \kappa \in \mathcal{C} .
$$

Later we will see that it is valid generally (theorem 3.1).
Case $2 b(\alpha \beta=0)$. Then we have the characteristic function

$$
h(x)=\frac{(x-p)^{2}}{(x-p)^{2}}=1
$$

and the characteristic polynomial

$$
P(x)=(x-p)^{4}
$$

In this case, we have $R(x)=(x-p)^{2}=S(x)$ and thus $Q(x)=1$, which is not a null polynomial of the supermatrix M. With an easy calculation we find that the polynomial

$$
m(x)=(x-p)^{2}
$$

of degree two is the minimum polynomial of the supermatrix M. According to the discussion of non-uniqueness made in case 2 a , also in this case the minimum polynomial $m(x)$ is not unique.
Case $2 c(\alpha=0=\beta)$. In this case, we have

$$
h(x)=1 \quad R(x)=S(x)=(x-p)^{2} \quad P(x)=(x-p)^{4}
$$

and $Q(x)=1$, which is not a null polynomial of the supermatrix M. The minimum polynomial of M is the first degree polynomial

$$
m(x)=x-p
$$

which is unique.
From the previous discussion it is clear that the use of the common factors $R(x)$ and $S(x)$ in the case of a non-separable $(1+1) \times(1+1)$ supermatrix M, either does not lead to a null polynomial of the supermatrix M or does not lead to the minimum polynomial of M.

In all cases the minimum polynomial of M is a product of factors of the characteristic polynomial $P(x)$ of the form
$a(x)=x-p \quad d(x)=x-q \quad a(x) \pm \alpha \beta w_{1}(x) \quad$ and $\quad d(x) \pm \alpha \beta w_{2}(x)$
where $w_{i}(x) \in \Lambda_{0}[x]$, with $\operatorname{deg} w_{i}(x) \leqslant 1, i=1,2$, which are taken from the various possible factorizations of $P(x)$. Factors of the form

$$
a(x) \pm \alpha \beta w_{1}(x) \quad \text { and } \quad d(x) \pm \alpha \beta w_{2}(x)
$$

with $w_{i}(x) \in \Lambda_{0}[x], \operatorname{deg} w_{i}(x) \geqslant 2$ are not suitable because these do not lead to monic polynomials.

In the case of separable $(1+1) \times(1+1)$ supermatrix M, i.e. when $\bar{p} \neq \bar{q}$, the minimum polynomial of M is the second degree polynomial

$$
m(x)=\left(x-p+\frac{\alpha \beta}{q-p}\right)\left(x-q+\frac{\alpha \beta}{q-p}\right)
$$

where $p-\frac{\alpha \beta}{q-p}$ is the eigenvalue of the first kind and $q-\frac{\alpha \beta}{q-p}$ is the eigenvalue of the second kind of the supermatrix M. In this case, the method of simplification of the characteristic function, proposed in [1], is effective. However, this method is not effective in the case of an $(1+1) \times(1+1)$ non-separable supermatrix M. In that case, the minimum polynomial $m(x)$ of M can be of every possible degree, that is

$$
1 \leqslant \operatorname{deg} m(x) \leqslant 4=\operatorname{deg} P(x)
$$

Furthermore, in the case of $(1+1) \times(1+1)$ non-separable supermatrix, the minimum polynomial is in general not unique, according to the following general result.
Theorem 3.1. For every supermatrix M over $\Lambda=\Lambda_{p}, p \leqslant+\infty$, if $M=\bar{M}+M_{N}$ and $m_{M_{0}}(x)$ is the minimum polynomial of the numeric part M_{0}, then

$$
\sigma m_{\bar{M}}(M)=0
$$

where $\sigma \in \Lambda_{\overline{0}}$ is an element annihilating all non-invertible elements in Λ.
Proof. Let $M=\bar{M}+M_{N}$ be an $(m+n) \times(m+n)$ supermatrix, when \bar{M} is an $(m+n) \times(m+n)$ matrix over \mathcal{C}, called the numeric part of M. Let

$$
m(t)=t^{k}+a_{k-1} t^{k-1}+\cdots+a_{1} t+a_{0}
$$

where $a_{0}, a_{1}, \ldots, a_{k-1} \in \mathcal{C}, k \leqslant m+n$, be the minimum polynomial of \bar{M}. We consider the polynomial

$$
m(M)=M^{k}+a_{k-1} M^{k-1}+\cdots+a_{1} M+a_{0} I
$$

We observe that

$$
M^{l}=\left(\bar{M}+M_{N}\right)^{l}=\bar{M}^{l}+M_{(N, l)} \quad l=1,2, \ldots, k
$$

where $M_{(N, l)}$ is an $(m+n) \times(m+n)$-supermatrix having all its elements nilpotent, as it is a finite sum of supermatrices which are products of supermatrices with the term M_{N} appearing at least once. Therefore, we have

$$
\begin{equation*}
\sigma M_{(N, l)}=0 \tag{3.1}
\end{equation*}
$$

for every $l=1,2, \ldots, k$, where σ is an even Grassmann number annihilating all nilpotent elements in Λ.

Finally, we write

$$
\begin{aligned}
& m(M)=\left(\bar{M}^{k}+a_{k-1} \bar{M}^{k-1}+\cdots+a_{0} I\right)+M_{(N, k)}+a_{k-1} M_{(N, k-1)}+\cdots+a_{1} M_{(N, 1)} \\
& \quad=m(\bar{M})+M_{(N, k)}+a_{k-1} M_{(N, k-1)}+\cdots+a_{1} M_{(N, 1)} \\
& \quad=M_{(N, k)}+a_{k-1} M_{(N, k-1)}+\cdots+a_{1} M_{(N, 1)}
\end{aligned}
$$

and therefore by (3.1) it is obvious that

$$
\sigma m(M)=0 .
$$

From all the above, we have proved the following theorem concerning the case of $(1+1) \times(1+1)$-supermatrices.
Theorem 3.2. Let

$$
M=\left[\begin{array}{cc}
p & \alpha \\
\beta & q
\end{array}\right] \quad p, q \in \Lambda_{\overline{0}} \quad \alpha, \beta \in \Lambda_{\overline{1}}
$$

be the arbitrary $(1+1) \times(1+1)$-supermatrix with the characteristic function

$$
h(x)=\frac{(x-p)(x-q)-\alpha \beta}{(x-q)^{2}}=\frac{(x-p)^{2}}{(x-p)(x-q)+\alpha \beta}
$$

and the characteristic polynomial

$$
P(x)=(x-p)^{2}(x-q)^{2} .
$$

Then one has the following cases:

- If M is separable, then the minimum polynomial of M is of the form

$$
m(x)=\left(x-p+\frac{\alpha \beta}{q-p}\right)\left(x-q+\frac{\alpha \beta}{q-p}\right)
$$

where $p-\frac{\alpha \beta}{q-p}$ and $q-\frac{\alpha \beta}{q-p}$ are the eigenvalues of M of the first and second kinds, respectively.

- If M is not separable, i.e. $\bar{p}=\bar{q}$, but $p \neq q$, then the minimum polynomial of M is of the form

$$
m(x)=(x-p)^{2}(x-q)^{2} .
$$

- If M is not separable and $p=q$, then the minimum polynomial of M is of the form

$$
m(x)=\left\{\begin{array}{lll}
(x-p)^{3} & \text { when } & \alpha \beta \neq 0 \\
(x-p)^{2} & \text { when } & \alpha \beta=0 \\
(x-p) & \text { when } & \alpha=\beta=0
\end{array}\right.
$$

- If M is non-separable its minimum polynomial is in general not unique.

4. The general case

We consider the arbitrary $(m+n) \times(m+n)$-supermatrix

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

with characteristic function given by (2.17) as

$$
h(x)=\frac{\tilde{F}(x)}{\tilde{G}(x)}=\frac{F(x)}{G(x)}
$$

and characteristic polynomial given by (2.18) as

$$
P(x)=\tilde{F}(x) G(x)=F(x) \tilde{G}(x)
$$

Suppose that $m(x)$ is the minimum polynomial of M, that is, a monic null polynomial of M of the least possible degree. Then $\operatorname{deg} m(x) \leqslant \operatorname{deg} P(x)$. According to the Euclidean algorithm [17], applied to $P(x)$ and $m(x)$ in the ring of polynomials $\Lambda_{0}[x]$, there exist unique polynomials $\Pi(x)$ and $v(x)$ such that

$$
\begin{equation*}
P(x)=m(x) \Pi(x)+v(x) \tag{4.1}
\end{equation*}
$$

and $\operatorname{deg} v(x)<\operatorname{deg} m(x)$ or $v(x)=0$. Since $P(x)$ and $m(x)$ are null polynomials of M, if $v(x) \neq 0$, then $v(x)$ will be a null polynomial of M of degree less than the degree of $m(x)$, which is absurd. Hence $v(x)=0$ and therefore $m(x)$ divides $P(x)$.

We note that $\Lambda_{\overline{0}}[x]$ is not a unique factorization ring. In particular, factors $u(x)^{2 r}$ of even degree can be written as

$$
\begin{equation*}
u(x)^{2 r}=\left[u(x)^{r}+\theta v(x)\right]\left[u(x)^{r}-\theta v(x)\right] \tag{4.2}
\end{equation*}
$$

where $\theta \in \Lambda_{\overline{0}}$ with $\theta^{2}=0$ and $v(x)$ is arbitrary in $\Lambda_{\overline{0}}[x]$. From the previous discussion we have that $m(x)$ must be a product of factors taken from a factorization of the characteristic polynomial $P(x)$. Some factors can be of the form given in the right-hand side of (4.2).

Therefore from the above discussion, theorem 3.1 and the work of Urrutia and Morales [1] and [16], we have proved the general theorem for the minimum polynomial of the arbitrary $(m+n) \times(m+n)$ supermatrix M. It can be stated as follows.

Theorem 4.1. Let

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

be the arbitrary $(m+n) \times(m+n)$-supermatrix with the characteristic polynomial

$$
P(x)=\tilde{F}(x) G(x)=a(x)^{n+1} d(x)^{m+1}
$$

where

$$
a(x)=\operatorname{det}(x I-A) \quad d(x)=\operatorname{det}(x I-D) .
$$

Let

$$
a_{1}(x), a_{2}(x), \ldots, a_{r}(x) \quad \text { and } \quad d_{1}(x), d_{2}(x), \ldots, d_{s}(x)
$$

be the irreducible factors of the polynomials $a(x), d(x)$ so that

$$
\begin{aligned}
a(x) & =a_{1}(x)^{i_{1}} a_{2}(x)^{i_{2}} \ldots a_{r}(x)^{i_{r}} \\
d(x) & =d_{1}(x)^{j_{1}} d_{2}(x)^{j_{2}} \ldots d_{s}(x)^{j_{s}} .
\end{aligned}
$$

Then $P(x)$ is a null polynomial of M. The minimum polynomial $m(x)$ of M divides $P(x)$ and is of the form

$$
m(x)=m_{1}(x) m_{2}(x) \ldots m_{k}(x)
$$

where $m_{i}(x), i=1,2, \ldots, k$ is one of the following factors:

$$
\begin{aligned}
& a_{\mu}(x)^{k_{\mu}}, \quad d_{v}(x)^{l_{v}}, \quad 0 \leqslant k_{\mu} \leqslant i_{\mu}(n+1), \quad 0 \leqslant l_{v} \leqslant j_{v}(m+1) \\
& A(x) D(x) \pm \theta \omega(x)
\end{aligned}
$$

where

$$
\begin{array}{ll}
\theta \in \Lambda_{\overline{0}} \quad \text { with } & \theta^{2}=0 \\
\omega(x) \in \Lambda_{\overline{0}}[x] \quad \text { with } & \operatorname{deg} \omega(x) \leqslant \operatorname{deg} A(x) D(x) \\
A(x)=\prod_{\mu=1}^{r} a_{\mu}(x)^{k_{\mu}} & D(x)=\prod_{v=1}^{s} d_{v}(x)^{l_{v}} \\
0 \leqslant k_{\mu} \leqslant i_{\mu}(n+1) & 0 \leqslant l_{\nu} \leqslant j_{v}(m+1) .
\end{array}
$$

In the following, we provide some examples to explain the arbitrariness of the selection of factors for the construction of the minimum polynomial of a supermatrix M for any possible factorization of the characteristic polynomial.

Example 1. For the supermatrix [1],

$$
M=\left(\begin{array}{cccc}
0 & 0 & 0 & \theta_{1} \tag{4.3}\\
0 & 1 & \theta_{2} & 0 \\
0 & \theta_{1} & -1 & 0 \\
\theta_{2} & 0 & 0 & 0
\end{array}\right)
$$

with $\theta_{1}, \theta_{2} \in \Lambda_{\overline{1}}$, we have

$$
\begin{aligned}
& \tilde{F}(x)=x^{3}(x+1)^{2}(x-1)+\theta x(x+1) \quad \text { where } \quad \theta=\theta_{1} \theta_{2} \\
& \tilde{G}(x)=x^{3}(x+1)^{3} \\
& F(x)=x^{3}(x-1)^{3} \\
& G(x)=x^{3}(x-1)^{2}(x+1)-\theta x(x-1) .
\end{aligned}
$$

Using the common factors R, S, the minimum polynomial is determined as

$$
Q(x)=x^{6}+\theta x^{5}-x^{4} .
$$

However, using an alternative approach based on all factors involved in the definition of the characteristic polynomial, one is able to find a null monic polynomial of the supermatrix M of degree lower than 6 . More explicitly, we have

$$
\begin{aligned}
& a(x)=x(x-1) \\
& d(x)=x(x+1) \\
& \tilde{F}(x)=x(x+1)\left[x^{2}\left(x^{2}-1\right)+\theta\right] \\
& G(x)=x(x-1)\left[x^{2}\left(x^{2}-1\right)-\theta\right] .
\end{aligned}
$$

Thus the characteristic polynomial is

$$
\begin{aligned}
P(x)=\tilde{F}(x) G(x) & =x^{2}(x-1)(x+1)\left[x^{2}\left(x^{2}-1\right)+\theta\right]\left[x^{2}\left(x^{2}-1\right)-\theta\right] \\
& =x^{6}(x-1)^{3}(x+1)^{3} .
\end{aligned}
$$

We observe that

$$
\begin{align*}
& M(M+I)\left[M^{2}\left(M^{2}-I\right)+\theta I\right]=0 \tag{4.4}\\
& M(M-I)\left[M^{2}\left(M^{2}-I\right)-\theta I\right]=0 . \tag{4.5}
\end{align*}
$$

Thus, we find for the supermatrix M, the null polynomials

$$
\begin{aligned}
& P_{1}(x)=x(x+1)\left[x^{2}\left(x^{2}-1\right)+\theta\right] \\
& P_{2}(x)=x(x-1)\left[x^{2}\left(x^{2}-1\right)-\theta\right]
\end{aligned}
$$

as well as the null polynomials

$$
\begin{aligned}
& Q_{1}(x)=\frac{1}{2}\left(P_{1}(x)+P_{2}(x)\right)=x^{6}-x^{4}+\theta x \\
& Q_{2}(x)=\frac{1}{2}\left(P_{1}(x)-P_{2}(x)\right)=x^{5}-x^{3}+\theta x^{2}
\end{aligned}
$$

Hence, we have determined a null monic polynomial $Q_{2}(x)$ of the supermatrix M such that

$$
\text { degree } Q_{2}(x)<\text { degree } Q(x)
$$

Moreover, we have that

$$
Q_{2}(x)=x^{2}[x(x+1)(x-1)+\theta]
$$

which is a product of factors of the characteristic polynomial $P(x)$, because of the factorization

$$
\begin{aligned}
P(x) & =x^{2}\left(x^{2}-1\right)^{2} x^{4}\left(x^{2}-1\right) \\
& =\left[x\left(x^{2}-1\right)+\theta\right]\left[x\left(x^{2}-1\right)-\theta\right] x^{4}\left(x^{2}-1\right) .
\end{aligned}
$$

Finally, we check that an equality of the form

$$
M^{4}+k_{3} M^{3}+k_{2} M^{2}+k_{1} M+k_{0} I=0
$$

with $k_{0}, k_{1}, k_{2}, k_{3}$ in $\Lambda_{\overline{0}}$ is impossible. Hence, the polynomial $Q_{2}(x)$ is a null polynomial of M of the least possible degree.

Moreover, the minimum polynomial of the numeric part \bar{M} of M is given by

$$
m_{\bar{M}}(x)=x(x+1)(x-1) .
$$

Hence, according to the theorem 3.1 every polynomial of the form

$$
Q_{2}(x)+\lambda \theta m_{\bar{M}}(x) \quad \lambda \in \mathcal{C}
$$

is a monic null polynomial of M of minimum degree.

Example 2. For the supermatrix

$$
M=\left(\begin{array}{cccc}
\theta & 0 & 0 & \theta_{1} \tag{4.6}\\
0 & \theta & \theta_{2} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where $\theta_{1}, \theta_{2} \in \Lambda_{1}$ and $\theta=\theta_{1} \theta_{2}$, we have

$$
\begin{array}{ll}
a(x)=(x-\theta)^{2} & d(x)=x(x-1) \\
\tilde{F}(x)=x^{2}(x-1)^{2}(x-\theta)^{2} & \tilde{G}(x)=x^{3}(x-1)^{3} \\
F(x)=(x-\theta)^{6} & G(x)=x(x-1)(x-\theta)^{4} .
\end{array}
$$

Thus we obtain

$$
\begin{aligned}
& \frac{\tilde{F}}{\tilde{G}}=\frac{x^{2}(x-1)^{2}(x-\theta)^{2}}{x^{3}(x-1)^{3}}=\frac{(x-\theta)^{2}}{x(x-1)}=\frac{x^{2}-2 \theta x}{x(x-1)}=\frac{x-2 \theta}{x-1}=\frac{\tilde{f}}{\tilde{g}} \\
& \frac{F}{G}=\frac{(x-\theta)^{6}}{x(x-1)(x-\theta)^{4}}=\frac{(x-\theta)^{2}}{x(x-1)}=\frac{x-2 \theta}{x-1}=\frac{f}{g}
\end{aligned}
$$

The polynomial that is obtained according to the method proposed in [1], is the polynomial

$$
Q(x)=\tilde{f} g=f \tilde{g}=(x-1)(x-2 \theta)
$$

which unfortunately is not a null polynomial of the supermatrix M. However, using factors from the polynomial

$$
P(x)=\tilde{F}(x) G(x)=x^{3}(x-1)^{3}(x-\theta)^{6}
$$

we find the null monic polynomials of degree 3

$$
\begin{aligned}
& P_{1}(x)=x(x-1)(x-\theta)=x^{3}-(1+\theta) x^{2}+\theta x \\
& P_{2}(x)=x^{2}(x-1)=x^{3}-x^{2}
\end{aligned}
$$

Their difference

$$
\begin{equation*}
P_{2}(x)-P_{1}(x)=\theta x^{2}-\theta x=\theta x(x-1) \tag{4.7}
\end{equation*}
$$

is a null polynomial of M of degree 2 , but it is not a monic polynomial.
Moreover, in this example we have an application of theorem 3.1. The minimum polynomial of the numeric part \bar{M} is $m_{\bar{M}}(x)=x(x-1)$ and thus the two null polynomials of degree 3 are related by

$$
P_{1}(x)=P_{2}(x)-\theta m_{\bar{M}}(x)
$$

where $\theta=\theta_{1} \theta_{2} \in \Lambda_{\overline{0}}$.
Moreover, we can check directly that there does not exist a null monic polynomial of the supermatrix M of degree two, that is, any equation of the form

$$
M^{2}+u M+v I=0 \quad u, v \in \Lambda_{\overline{0}}
$$

is impossible.
Therefore, we can consider as the minimum polynomial of the supermatrix M one of the polynomials

$$
P_{1}(x)=x(x-1)(x-\theta) \quad P_{2}(x)=x^{2}(x-1)
$$

The polynomial $P_{1}(x)$ contains all linear factors of the characteristic polynomial $P(x)$, while the polynomial $P_{2}(x)$ does not contain all linear factors of $P(x)$. However, both
polynomials $P_{1}(x)$ and $P_{2}(x)$ can be constructed as products of factors selected from the characteristic polynomial $P(x)=x^{3}(x-1)^{3}(x-\theta)^{6}$.

Example 3. We consider the supermatrix

$$
M=\left(\begin{array}{cccc}
1 & 0 & 0 & \theta_{1} \tag{4.8}\\
0 & 0 & \theta_{2} & 0 \\
0 & \theta_{1} & 0 & 0 \\
\theta_{2} & 0 & 0 & 0
\end{array}\right)
$$

given in [1], for which with the method proposed in [1], we find first the null monic polynomial

$$
Q_{1}(x)=x^{6}-(1+2 \theta) x^{5}+\theta x^{3}
$$

However, as noted in [1], some accidental cancellations which occur in this case, that are not possible to describe in general, lead finally to a lower degree null monic polynomial

$$
Q(x)=x^{4}-(1+2 \theta) x^{3}+\theta x
$$

We note that in this example we have

$$
\begin{array}{ll}
a(x)=x(x-1) & d(x)=x^{2} \\
\tilde{F}(x)=x^{3}\left[x^{2}(x-1)-\theta\right] & \tilde{G}(x)=x^{6} \\
F(x)=x^{3}(x-1)^{3} & G(x)=x^{2}(x-1)\left[x^{2}(x-1)+\theta\right] .
\end{array}
$$

Alternatively, we have the characteristic polynomial

$$
P(x)=\tilde{F}(x) G(x)=x^{3}(x-1)\left[x^{2}(x-1)-\theta\right]\left[x^{2}(x-1)+\theta\right]=x^{9}(x-1)^{3}
$$

and using factors from this polynomial we find the null monic polynomial of the supermatrix M,

$$
m(x)=x^{4}-x^{3}-\theta x=x\left[x^{2}(x-1)-\theta\right]
$$

which is of the same degree as the polynomial $P(x)$. Moreover, it is a product of factors selected from the following factorization of the characteristic polynomial:

$$
\begin{aligned}
P(x) & =x^{9}(x-1)^{3}=x^{5} x^{4}(x-1)^{2}(x-1) \\
& =x^{5}\left[x^{2}(x-1)-\theta\right]\left[x^{2}(x-1)+\theta\right](x-1) .
\end{aligned}
$$

The same is true for the polynomial $Q(x)$ according to the factorization

$$
Q(x)=x^{4}-(1+2 \theta) x+\theta x=x\left[x^{2}(x-1)-\theta\left(2 x^{2}-1\right)\right]
$$

and

$$
\begin{aligned}
P(x) & =x^{9}(x-1)^{3}=x^{5}(x-1)\left[x^{2}(x-1)\right]^{2} \\
& =x^{5}(x-1)\left[x^{2}(x-1)-\theta\left(2 x^{2}-1\right)\right]\left[x^{2}(x-1)+\theta\left(2 x^{2}-1\right)\right]
\end{aligned}
$$

Moreover, we can write

$$
Q(x)=m(x)-2 \theta x(x-1)(x+1)
$$

The difference

$$
m(x)-Q(x)=2 \theta x(x-1)(x+1)
$$

is a polynomial annihilating M, but it is not a monic polynomial.

We consider the numeric part \bar{M} of the supermatrix M, i.e. the matrix formed by the numeric parts of the entries of M. We have

$$
\bar{M}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

It has characteristic polynomial $\mathcal{X}_{\bar{M}}(x)=x^{3}(x-1)$ and minimum polynomial $m_{\bar{M}}(x)=$ $x(x-1)$. Therefore we have the equation

$$
m(x)=Q(x)+2 \theta(x+1) m_{\bar{M}}(x)
$$

5. Summary

For an arbitrary supermatrix M there has been introduced by Urrutia and Morales [1] two types of null polynomials, thus providing an extension of the Cayley-Hamilton theorem for supermatrices.

The first one is the so-called characteristic polynomial $P(x)$, which is directly associated with the supermatrix M independent of the factorization of the numerator and denominator of the rational function $s \operatorname{det}(x I-M)$.

The second is the polynomial $Q(x)$ which has been introduced as the minimum polynomial of the supermatrix M. Its definition depends on the existence of a maximum common divisor of the polynomials $\tilde{F}(x)$ and $\tilde{G}(x)$ or $F(x)$ and $G(x)$ which are the building blocks of $s \operatorname{det}(x I-M)$. However, because of the elimination of the common factors R and S from the polynomials $\tilde{F}(x)$ and $\tilde{G}(x)$ or $F(x)$ and $G(x)$ we miss the possibility of choosing factors for the construction of a minimum polynomial of M from the complete set of divisors of the polynomials $\tilde{F}(x)$ and $\tilde{G}(x)$ or $F(x)$ and $G(x)$. It has been shown here that using factors from $\tilde{F}(x)$ and $\tilde{G}(x)$ or $F(x)$ and $G(x)$, it is possible to determine a null polynomial of M of a degree lower than the degree of the polynomial $Q(x)$.

The case of $(1+1) \times(1+1)$ supermatrices has been studied completely. The form of the minimum polynomial has been described in the general case of $(m+n) \times(m+n)$ supermatrices. Since the minimum polynomial divides the characteristic polynomial, this can be constructed as a product of factors arising from any possible factorization of the characteristic polynomial. The minimum polynomial does not necessarily contain all linear factors involved in a particular factorization of the characteristic polynomial (example 2), a result which is due to the nature of the elements of the off-diagonal blocks B and C, which are nilpotent of degree 2 . In addition, as a consequence of theorem 3.1, we get that the null polynomial of minimum degree of a supermatrix is not necessarily unique.

References

[1] Urrutia L F and Morales N 1994 J. Phys. A: Math. Gen. 271981
[2] Horne J H 1990 Nucl. Phys. B 334669
[3] Birmingham D, Blau M, Rakowski M and Thompson G 1991 Phys. Rep. 209129
[4] Witten E 1988 Nucl. Phys. B 33146
[5] Koehler K, Mansouri F, Vaz C and Witten L 1990 Mod. Phys. Lett. A 5935 Koehler K, Mansouri F, Vaz C and Witten L 1990 Nucl. Phys. B 341167
[6] Armand-Ugon D, Gambini R, Obregon O and Pullin J 1996 Nucl. Phys. B 460615
[7] Mostow G D, Sampson J H and Meyer J P 1963 Fundamental Structures of Algebra (New York: McGraw-Hill)
[8] Rogers A 1980 J. Math. Phys. 211352
[9] Berezin F A 1987 Introduction to Superanalysis (Dordrecht: Reidel)
[10] van Nieuwenhuizen P 1981 Phys. Rep. 68C 189
[11] Backhouse N B and Fellouris A G 1984 J. Phys. A: Math. Gen. 171389
[12] Arnowitt R, Nath P and Zumino B 1975 Phys. Lett. 5681
[13] De Witt B 1984 Supermanifolds (Cambridge: Cambridge University Press) p 33
[14] Kobayashi Y and Nagamachi S 1990 J. Math. Phys. 312726
[15] Kobayashi Y and Nagamachi S 1988 Proc. Japan Acad. 64249
[16] Urrutia L F and Morales N 1994 Lett. Math. Phys. 32211
[17] Lang S 1965 Algebra (Reading, MA: Addison-Wesley)

